Application of neural networks for the analysis of gamma-ray spectra measured with a Ge spectrometer

URI http://harp.lib.hiroshima-u.ac.jp/hbg/metadata/5752
ファイル
タイトル
Application of neural networks for the analysis of gamma-ray spectra measured with a Ge spectrometer
著者
氏名 岡 隆光
ヨミ オカ タカミツ
別名 Oka Takamitsu
氏名 静間 清
ヨミ シズマ キヨシ
別名 Shizuma Kiyoshi
氏名
ヨミ エンドウ サトル
別名 Endo Satoru
氏名
ヨミ ヨシダ エイジ
別名 Yoshida Eiji
キーワード
Gamma-ray spectrometr
Neural network
Radioisotope identification
抄録

The analysis of gamma-ray spectra to identify lines and their intensities usually requires expert knowledge and timeconsuming calculations with complex fitting functions. A neural network algorithm can be applied to a gamma-ray spectral analysis owing to its excellent pattern recognition characteristics. However, a gamma-ray spectrum typically having 4096 channels is too large as a typical input data size for a neural network. We show that by applying a suitable peak search procedure, gamma-ray data can be reduced to peak energy data, which can be easily managed as input by neural networks. The method was applied to the analysis of gamma-ray spectra composed of mixed radioisotopes and the spectra of uranium ores. Radioisotope identification was successfully achieved.

掲載雑誌名
Nuclear Instruments & Methods in Physics Research Section A
484
開始ページ
557
終了ページ
563
出版年月日
2002-05
本文言語
英語
資料タイプ
学術雑誌論文
著者版フラグ
旧URI
区分
hbg