
IEICE TRANS. COMMUN., VOL.E85–B, NO.12 DECEMBER 2002
2895

PAPER

Data Transfer Time by HTTP 1.0/1.1 on Asymmetric

Networks Composed of Satellite and Terrestrial Links

Hiroyasu OBATA†∗, Student Member, Kenji ISHIDA††, Junichi FUNASAKA††,
and Kitsutaro AMANO††, Regular Members

SUMMARY Asymmetric networks, which provide asymmet-
ric bandwidth or delay for upstream and downstream transfer,
have recently gained much attention since they support popu-
lar applications such as the World Wide Web (WWW). HTTP
(Hypertext Transfer Protocol) is the basis of most WWW ser-
vices so, evaluating the performance of HTTP on asymmetric
networks is increasingly important, particularly real-world net-
works. However, the performance of HTTP on the asymmetric
networks composed of satellite and terrestrial links has not suffi-
ciently evaluated. This paper proposes new formulas to evaluate
the performance of both HTTP1.0 and HTTP1.1 on asymmetric
networks. Using these formulas, we calculate the time taken to
transfer web data by HTTP1.0/1.1. The calculation results are
compared to the results of an existing theoretical formula and ex-
perimental results gained from a system that combines a VSAT
(Very Small Aperture Terminal) satellite communication system
for satellite links (downstream) and the Internet for terrestrial
links (upstream). The comparison shows that the proposed for-
mulas yield more accurate results (compared to the measured
values) than the existing formula. Furthermore, this paper pro-
poses an evaluation formula for pipelined HTTP1.1, and shows
that the values output by the proposed formula agree with those
obtained by experiments (on the VSAT system) and simulations.
key words: web data transfer time, asymmetric networks, satel-
lite links, terrestrial links, pipeline

1. Introduction

The popularity of the Internet is reflected in the rise
in client access rates to the Internet. Since such access
is essentially asymmetric, customer satisfaction can be
enhanced by using asymmetric networks, which pro-
vide asymmetric bandwidth or delay to upstream and
downstream transfer. This is supported by the emer-
gence of sophisticated network technologies. Examples
include ADSL (Asymmetric Digital Subscriber Line)
[1] and cable modems. One exciting approach is to
combine satellite and terrestrial links. To this end,
several techniques, such as the system using UDLR
(Uni-Directional Link Routing) [2], [3], NTT system
[4], [5], and the DirecPC system [6] have been devel-
oped. These services allow users to take advantage

Manuscript received January 4, 2002.
Manuscript revised April 26, 2002.

†The author is with the Graduate School of Information
Sciences, Hiroshima City University, Hiroshima-shi, 731-
3194 Japan.

††The authors are with the Department of Computer En-
gineering, Faculty of Information Sciences, Hiroshima City
University, Hiroshima-shi, 731-3194 Japan.

∗Presently, with KDDI Corp.

of asymmetric networks by sending requests for web
contents via a terrestrial (land) line such as a modem,
and receiving that information via a high speed, error-
resilient satellite link.

Here, we provide a brief classification of asymmet-
ric networks, because several forms are known [7].

• Bandwidth asymmetry: Typically, the down-
stream bandwidth is 10–1000 times the upstream
bandwidth. Examples include cable modem,
ADSL, and satellite-based networks.

• Media access asymmetry: This manifests itself in
several ways. Example includes cellular wireless
networks.

• Loss rate asymmetry: The network may inherently
be more lossy in one direction than in the other.

• Propagation delay asymmetry: Propagation delay
of the network is larger in one direction than in the
other. Example includes satellite-based networks.

This article focuses on satellite–terrestrial networks
that are characterized by both bandwidth and prop-
agation delay asymmetry.

Asymmetric networks are most often employed by
Internet users to access the WWW. Since HTTP (Hy-
pertext Transfer Protocol) is a key technology of the
WWW, it is essential to be able to predict the perfor-
mance of HTTP on asymmetric networks.

HTTP is an application-level protocol for dis-
tributed, collaborative, hypermedia information sys-
tems [8], [9]. In the last few years, several articles have
studied HTTP performance, but all provide only ex-
perimental evaluations [10], [11]. In a recent paper [12],
the authors proposed an excellent formula for asym-
metric networks. However, since the connection setup
phase was not examined in detail, the formula may be
inaccurate if the propagation delay is asymmetric. The
authors turned their attention to the asymmetric net-
works that have asymmetric bandwidth, such as ADSL.
Furthermore, with regard to HTTP1.1, the authors did
not analyze the behavior of the congestion window in
detail. Thus, the formula may inaccurate when calcu-
lating the time taken to transfer web data via HTTP1.1.

The performance of HTTP over asymmetric net-
works composed of satellite and terrestrial links has not
been theoretically evaluated in sufficient detail. Note
that the term HTTP covers both HTTP1.0 [8] and



2896
IEICE TRANS. COMMUN., VOL.E85–B, NO.12 DECEMBER 2002

HTTP1.1 [9] and thus this paper proposes new per-
formance evaluation formulas for both HTTP1.0 and
HTTP1.1. Using these new evaluation formulas, we
calculate the data transfer time of HTTP1.0/1.1 over
asymmetric networks. The calculation results are com-
pared to the results of an existing theoretical formula
and experiments conducted using a VSAT (Very Small
Aperture Terminal) satellite communication system for
satellite links (downstream) and the Internet for ter-
restrial links (upstream). The results show that the
proposed formulas better mirror the real-world perfor-
mance than the existing formula.

HTTP1.1 shortens the data transmission time
compared to HTTP1.0 since it doesn’t force the client
to set up a new TCP connection for each data request.
This technique is also called “persistent connections”
[9]. A persistent connection allows multiple requests
to be sent without waiting for the server’s response.
This is useful in minimizing the total round trip delay
and the number of packets, and improving performance.
This technique is called “pipelining” [9], [10]. Unfortu-
nately, current web browsers do not offer pipelining,
and the performance of pipelined HTTP1.1 on asym-
metric networks composed of satellite and terrestrial
links has not been well investigated. Therefore, this
paper also proposes a formula for pipelined HTTP1.1,
and shows that the values calculated by the proposed
formula agree with those obtained by conducted on a
VSAT system and simulations.

The rest of this paper is organized as follows. Sec-
tion 2 provides some background to this paper. Next,
Sect. 3 introduces new formulas for asymmetric net-
works that can accurately estimate the performance
(transfer time) of HTTP1.0/1.1. Numerical results and
a discussion are then presented in Sect. 4. Section 5
shows the evaluation results of pipelined HTTP1.1. Fi-
nally, Sect. 6 concludes this paper.

2. Preliminary

In this section, we show the network model, and discuss
related works.

2.1 Network Model

The network model used in our analysis and evaluation
is depicted in Fig. 1.

The model consists of a server, a client, and two
links (see Fig. 1); the downstream (satellite) link from
the server to the client and the upstream (terrestrial)
link† from the client to the server. The links have asym-
metric bandwidth and delay. Bandwidths of the down-
stream and the upstream links are denoted as Qsat and
Qter, respectively. Propagation delays of the links are
denoted as τsat and τter, respectively. We assume that
(web) data to be transmitted consists of n data sets. A
data set is composed of some segment sets, and one seg-

Fig. 1 Asymmetric network composed of a VSAT satellite
communication system and the Internet.

ment set is made up of several data segments (packets).
Data segment size and ack segment size are represented
by dseg and dack, respectively. dack is taken as the sum
of TCP and IP header size. Next, dseg represents the
maximum segment size (MSS), which is calculated by
subtracting the sum of TCP and IP header size from
the maximum transmission unit (MTU) size.

2.2 Related Works

Several researchers have studied the performance of
HTTP [10], [11]. However, these articles only experi-
mentally evaluate HTTP performance.

In [12], analytical results are presented for asym-
metric networks. We briefly explain the formula used
below to model the transfer of data by TCP. In this for-
mula, the transfer time of data is the sum of the connec-
tion setup time Tsetup and the transfer time Ttransfer

[12]. Here, the connection setup time Tsetup is,

Tsetup =




3
2rtt, (each transfer in HTTP1.0
and the first transfer in HTTP1.1)
1
2rtt, (the second and subsequent

transfers in HTTP1.1)

where, rtt is the round trip time of the connection.
Finally, the total of data transfer time Ttotal is given as
Ttotal = Ttransfer + Tsetup.

The authors calculated the connection setup time
Tsetup by a simple equation. Since propagation delay
was assumed to be symmetrical in the numerical exam-
ples, this formula may be unable to accurately calculate
the connection setup time when the propagation delay
is asymmetric. Furthermore, this formula doesn’t com-
pletely reflect the behavior of the congestion window
when the following data flows are transferred by TCP in
HTTP1.1. That is, this formula included a Slow Start
phase for second and subsequent data flows. However,
from experiments we found that the congestion window
doesn’t enter the Slow Start phase for the second and
later data flows. Accordingly, this formula inaccurately

†Since the upstream is not the private line but the In-
ternet, there is a possibility of occurring packet losses in the
upstream. The discussion of this point is given in Sect. 3.1.



OBATA et al.: DATA TRANSFER PERFORMANCE OF HTTP 1.0/1.1 ON ASYMMETRIC NETWORKS
2897

models HTTP1.1 performance.

3. Proposed Formulas

In order to overcome the above problem we assessed
the connection setup time in detail. We create new
formulas by extending the TCP formula given in [13],
[14]. In this paper, we define HTTP performance as the
time taken from issue of the TCP connection request
from the client to the completion of receiving all data
from the corresponding web server. We describe a new
formula for HTTP1.0 in Sect. 3.1. A new formula for
HTTP1.1 is then presented in Sect. 3.2.

3.1 Modeling HTTP1.0

Figure 2(a) shows a typical data transfer by HTTP1.0.
For clarity, the TCP acks after connection establish-
ment have been eliminated. When the client requests
data from the server, a new TCP connection is estab-
lished between the client and the server. Next, the
client sends an HTTP request to the server, who then
begins to transfer the data using TCP. When the data
transfer is complete, the TCP connection is immedi-
ately closed [8], [12]. This means that the original for-
mula can be extended to cover HTTP1.0 by adding
the connection setup time to the time taken to send
the data by TCP. The following paper ignores server
overhead because experimental results showed that it
is negligible compared to the network events.

Subsection (I) calculates the connection setup time
while (II) introduces the equations that yield the data
transmission time by TCP. Finally, the new formula for
HTTP1.0 is presented in (III).

(I) The Connection Setup Time

The connection setup time Tconnect is the sum of the
time required to transmit the packets (segments) and
the propagation delay on the downstream and upstream

(a) The case of HTTP 1.0 (b) The case of HTTP 1.1

Fig. 2 Data transfer by HTTP1.0/1.1.

links (see Fig. 2(a)). Thus, Tconnect is given by Eq. (1),
where the packets that are transmitted for connection
setup and for requesting data have the size of Pconnect.

Tconnect =
Pconnect

Qsat
+
2Pconnect

Qter
+ τsat + 2τter (1)

(II) Data Transmission Time by TCP

The data transmission time by TCP can be obtained
using the formula in [13], [14]. In this paper, TCP ver-
sion that we considered is Reno†.

We start by briefly explaining the formula in [13],
[14]. In TCP, the transmission of data is based on win-
dow control; window size can vary during the session
as shown in Fig. 3. Window size determines the size
of each segment set which is transmitted by TCP at
a time. Thus, we introduced a transmission period,
i.e. the period of time between a transmission and the
next transmission, is a function of the number of trans-
missions. Therefore, the total transmission time is the
sum of the times taken to send all segment sets. Note
that the formula considers the Slow Start phase and
the Maximum Window Size phase (see Fig. 3).

Moreover, it is assumed that retransmission of data
does not occur, meaning that there is enough buffering
in the client, and no packet losses occur in both satellite
links and terrestrial links. We explain this assumption
for the satellite and terrestrial links. For the satellite
link, comprehensive experiments discovered that packet
loss is rare [13]–[15]. On the other hand, since the re-
quest and ack packets are sent over the terrestrial links,
there is a possibility of their losses. However, their loss
rates are insignificant because they are very small and
the terrestrial link has practically sufficient bandwidth
for these packets.

To begin with, the window size at the k-th trans-
mission w(k) is given by Eq. (2), where w(0) equals 1.
In Eq. (2), MWS denotes the maximum window size.

Fig. 3 Assumed change in w(k).

†Our experiments involved machines running TCP
Reno, while [12] considered TCP Tahoe. Therefore, we
modified the equation in [12] to reflect the different char-
acteristic of TCP Reno. That is, when packet loss occurs,
the window size is halved instead of being set to zero.



2898
IEICE TRANS. COMMUN., VOL.E85–B, NO.12 DECEMBER 2002

w(k + 1) = min

(
w(k) +

⌈
w(k)
2

⌉
, MWS

)
(2)

w(k) is assumed to follow the curve shown in Fig. 3.
Next, transmission period t(k) is given by Eq. (3).

rtt, a(k), and q(k−1) denote the round trip time, trans-
mission time required to send segment set of size w(k),
and transmission time required to send ack segment
corresponding to the (k − 1)-th transmission, respec-
tively.

t(k) = max(rtt, a(k), q(k − 1)) (3)

rtt, a(k) and q(k) are given by Eqs. (4), (5) and
(6), respectively. In Eqs. (4) and (5), segment size of
data P is the sum of payload data size and both TCP
and IP headers.

rtt = τsat + τter +
2 · P
Qsat

+
dack

Qter
(4)

a(k) =
P · w(k)

Qsat
(5)

q(k) =
dack · �w(k)

2 �
Qter

(6)

Next, the threshold th which satisfies Eq. (7) is ob-
tained. In Eq. (7), F denotes the data set size.

th∑
k=0

{w(k) · dseg} � F <

th+1∑
k=0

{w(k) · dseg} (7)

Thus the time, T , required for transmitting a data
set of size F via TCP (HTTP1.0) is given by Eq. (8).

T =
th∑

k=0

t(k)+

F−
th∑

k=0

{w(k) · dseg}+dack

Qsat
+τsat

(8)

(III) Multiple Data Set Transmission Time by
HTTP1.0

Finally, the time Thttp1.0 required for transmitting n
data sets by HTTP1.0 is the sum of the time required
for the data transmission by TCP (Ttransmit(k)) and
the connection setup time (Tconnect), Thttp1.0 is given
by Eq. (9) which is derived from Eq. (1) and Eq. (8).
Here, Ttransmit(k) is defined as the transmission time
of the k-th data set.

Thttp1.0 = nTconnect +
n∑

k=1

Ttransmit(k) (9)

3.2 New Formula for HTTP1.1

Figure 2(b) shows a typical data transfer by HTTP1.1.
The first request is handled in the same way as

HTTP1.0. When the client requests a new data set
from the same server, the client doesn’t have to estab-
lish a new TCP connection. It is because, in HTTP1.1,
the client retains information about the previously es-
tablished TCP connection. Therefore, the client can
send an HTTP request without negotiation [9], [12]. It
follows that the transfer of the first data set follows
Eq. (9) while the subsequent data sets are transferred
more rapidly. Subsection (I) introduces a formula for
these subsequent transfers. Subsection (II) introduces
a formula that estimates the total transfer time of all
data sets.

(I) The Time for the Second and Later Request of
Web Data

The time taken to transfer the second and later re-
quested data sets T ′

connect is the sum of the time re-
quired to transmit one packet and the propagation de-
lay of the upstream link (see Fig. 2(b)). Thus, T ′

connect

is given by Eq. (10).

T ′
connect =

Pconnect

Qter
+ τter (10)

(II) Transmission Time of All Web Data by HTTP1.1

When the client requests n data sets, the time, Thttp1.1,
taken by HTTP1.1 to transfer all sets is the sum of the
time required data transfer by TCP (Ttransmit(k)) and
the time for the second and later request of web data
(T ′

connect), and the connection setup time (Tconnect).
Thus, Thttp1.1 is described as Eq. (11) from Eq. (1),
Eq. (8), and Eq. (10).

Thttp1.1 = Tconnect + (n − 1)T ′
connect

+
n∑

k=1

Ttransmit(k) (11)

Hereafter, Eqs. (9) and (11) are referred to as “the
initial (1.0) formula,” and “the initial (1.1) formula,”
respectively.

4. Numerical Evaluation

This section, applies the initial (1.0) and (1.1) formulas
to an asymmetric network, the calculation results are
compared to experimental data [16].

4.1 Parameters of the Asymmetric Network

Table 1 lists the parameters of the asymmetric network
considered below. The asymmetric network is com-
posed of a VSAT satellite communication system and
the Internet [17] (see Fig. 1).

4.2 Evaluation

In this subsection, the values yielded by the initial for-
mulas are compared with the experimental data.



OBATA et al.: DATA TRANSFER PERFORMANCE OF HTTP 1.0/1.1 ON ASYMMETRIC NETWORKS
2899

Table 1 Network parameters.

Data Size (kbyte) 5,10,50,100,500
Data Segment Size (byte) 1448
Ack Segment Size (byte) 52
Downstream Bandwidth (kbps) 2048
Upstream Bandwidth (kbps) 900.7
Downstream Delay (msec) 258.6
Upstream Delay (msec) 17.3
Pconnect (byte) 52

Fig. 4 Comparison of the transfer time of web data by the ini-
tial formulas and the experimental results, with various number
of data sets.

Fig. 5 Comparison of the transfer time by the initial formulas
and the experimental results, for data sets of various sizes.

In the experiments, we used Apache 1.3.14 [18] as
the web server and libwww robot (release 5.2.6) from
W3 Consortium [19] as the client. We set up a sample
web page that offered multiple images, and averaged
five results obtained by downloading the same data sets
following the method described in [10], [11].

Figure 4 compares the transfer time as determined
from by the initial formulas and the experimental re-
sults; the data set size was 5 kbyte and the number of
data sets per web page was set at 10, 20, 30, 40 50, and
60. Figure 5 indicates that similar results were recorded
when the number of data sets per web page was 20 with
data sizes of 5 kbytes, 10 kbytes, 50 kbytes, 100 kbytes,
and 500 kbytes. In these figures, the symbols represent
the experimental results and the lines plot the values
predicted by the initial formulas.

4.3 Discussion

To begin with, we discuss the accuracy of the initial for-

Fig. 6 Change in sequence number.

mulas. From Fig. 4 and Fig. 5, it is observed that the
values derived from the initial (1.0) formula are con-
sistent with the experimental results. This is not true
for the initial (1.1) formula. Since the initial (1.1) for-
mula overestimates the transfer time, we can surmise
that the Slow Start phase of TCP for the second and
subsequent transfers included in the initial (1.1) for-
mula is unnecessary. To confirm this assumption, we
investigated the sequence number of TCP transfer and
determined whether the congestion window shrank or
not. Figure 6 shows the data sequence number (taken
from Fig. 5) as observed at the server; data set size is
10 kbytes. These results were obtained from the output
of the tcpdump command in the server (see Fig. 1).

In Fig. 6, the amount of whole data which are en-
closed with the circle means one data set. From Fig. 6,
it is clear that multiple packets are transmitted at
the same time even when starting the next web data
transfer. Thus it seems reasonable to suppose that
the sender’s congestion window stays large, i.e. Slow
Start phase is not used. This suggests that the for-
mula of [13], [14] (Eq. (8) in this paper) should be mod-
ified. Here note that in Fig. 6, the data request interval
is about 0.28 second. Based on side experiments, it
appears that the congestion window doesn’t enter the
Slow Start phase even if the data request interval is 1
second in the environment. However, if the data re-
quest interval is very large (for example, 10 second),
the server may begin Slow Start. In this case, it is not
necessary to adapt the following modification.

We now introduce (T ′
transmit(k)) as the transfer

time of the k-th data set, whose size equals Fk, by TCP
where k > 1. It can be determined by removing the
Slow Start phase from Eq. (8).

T ′
transmit(k)

=
⌊

Fk

MWS

⌋
· tmax

+
(Fk) mod (MWS) + dack

Qsat
+ τsat (12)

In Eq. (12), tmax denotes the transmission period
in maximum window size phase that is calculated by
Eq. (3) using w(k) = MWS/dseg.



2900
IEICE TRANS. COMMUN., VOL.E85–B, NO.12 DECEMBER 2002

Fig. 7 Performance of revised (1.1) formula, with various
numbers of data sets.

Fig. 8 Performance of revised (1.1) formula, with various data
sizes.

Finally, the new equation for Thttp1.1 (Eq. (13)) is
derived from Eq. (11).

Thttp1.1 = Tconnect + (n − 1)T ′
connect

+ Ttransmit(1) +
n∑

k=2

T ′
transmit(k) (13)

We refer to Eq. (13) as “the revised (1.1) formula.”
Next, we compare the values derived from the re-

vised (1.1) formula to experimental results for various
numbers of data sets in Fig. 7. Figure 8 presents sim-
ilar results for various data set sizes. From Fig. 7 and
Fig. 8, it is obvious that the revised (1.1) formula better
mirrors the experimental results, which confirms that
our understanding is correct.

Next, we compare the values yielded by the pro-
posed formulas to those yielded by the formula in [12].
Figure 9 plots the transfer time using HTTP1.0, with
various numbers of data sets. Figure 10 plots a similar
comparison for HTTP1.1. It is obvious from Fig. 9 and
Fig. 10 that the proposed formulas are more accurate
than the existing formula. Now, we discuss the reason
for the superiority of the proposed formulas. Figure 9
illustrates the performance of HTTP1.0. The vertical
axis represents the sum of the connection setup time
and the data transmission time. For the connection
setup time, the formula in [12] doesn’t consider asym-
metric propagation delay. On the other hand, we an-
alyzed the connection setup time in detail (See Eq. (1)
and Eq. (10)). With regard to the data transmission

Fig. 9 HTTP1.0 comparison.

Fig. 10 Performance of revised 1.1 formula.

time, the difference between the initial 1.0 formula and
the formula in [12] is small. Therefore, for HTTP 1.0,
the difference in total data transmission time is mainly
caused by the connection setup time. Here, the differ-
ence in connection setup time between the formula in
[12] (Tsetup is about 0.41 seconds) and our proposed
formula (Tconnect is about 0.29 seconds) is about 0.12
seconds. This means that the difference in data trans-
mission time between the formula in [12] and the initial
1.0 formula is about 1.2 seconds for 10 data sets and
about 7.2 seconds for 60 data sets. This confirms that
the initial 1.0 formula is more accurate than the formula
in [12].

Figure 10 shows the comparable results for the re-
vised 1.1 formula. With regard to the connection setup
time, the difference between the revised 1.1 formula and
the formula in [12] is relatively small. There is a large
difference in terms of the data transmission time. The
formula in [12] doesn’t reflect the behavior of the con-
gestion window when data sets are transmitted contin-
uously. That is, the formula in [12] assumes that the
second and later data sets are transmitted including the
Slow Start phase. The proposed formula, on the other
hand, considers the behavior of the congestion window
in detail (see Eq. (12) and Eq. (13)).

As a result, the values from the proposed formulas
better match the experimental results than the formula
in [12].

The revised 1.1 formula does not consider pipelin-



OBATA et al.: DATA TRANSFER PERFORMANCE OF HTTP 1.0/1.1 ON ASYMMETRIC NETWORKS
2901

ing [9] because this technique is not offered by current
web browsers, however, it does appear to improve the
performance of HTTP.

5. New Formula for HTTP1.1 with Pipeline

In this section, we show a formula for pipelined
HTTP1.1 that is an extension of the revised 1.1 for-
mula.

Figure 11 indicates data transfer by pipelined
HTTP1.1. In the figure, the server transmits the data
sets in the page requested by the client. Next, the client
sends multiple requests without waiting for each re-
sponse. Finally, the server sends its responses to those
requests in the same order in which the requests were
received [9].

Therefore, the time Thttp1.1−pipeline required for
transmitting all data sets by pipelined HTTP1.1 is the
sum of the time required for transmission of the first
data set by TCP (Ttransmit(1)), the time required for
the second and subsequent data sets on the first page
(T ′′

transmit), the time for the second and subsequent
data requests (T ′

connect), and the connection setup time
(Tconnect). T ′′

transmit is given by Eq. (12) where we treat
data sets 2 to n, which have size Fk, as one data. This
means that T ′′

transmit is given by Eq. (14).

T ′′
transmit =

⌊∑n
k=2 Fk

MWS

⌋
· tmax + τsat

+

(
n∑

k=2

Fk

)
mod (MWS) + dack

Qsat

(14)

Finally, Thttp1.1−pipeline is given by Eq. (15), which
is derived from Eq. (1), Eq. (8), Eq. (10), and Eq. (14).

Fig. 11 HTTP1.1 with pipeline.

Thttp1.1−pipeline = Tconnect + T ′
connect

+ Ttransmit(1) + T ′′
transmit (15)

We refer to Eq. (15) as “the pipeline formula.”
Figure 12 depicts the transfer time achieved by

pipelined HTTP1.1 for the data set size of 5 kbytes.
In the figure, the symbols represent the results of sim-
ulation experiments and experimental results, and the
lines plot the pipeline formula values. Here, we used
OPNET Modeler/RADIO [20] to conduct the simula-
tion experiments. From Fig. 12, it is obvious that the
pipeline formula well predicts both the experimental
results and the simulation results.

We found that the benefit of pipelining increases
with the number of data sets (see Fig. 12). For exam-
ple, pipelining reduces the transfer time by about 1.5
seconds for 10 data sets and about 20 seconds for 100
data sets. These results lead to the conclusion that
pipelining is recommended when many data sets are to
be transmitted continuously on asymmetric networks
using satellite and terrestrial links.

6. Conclusion

This paper has studied the transfer time of data sets
by HTTP1.0/1.1 over the asymmetric networks com-
posed of satellite and terrestrial links. Equation (9)
for HTTP1.0, Eq. (13) for HTTP1.1, and Eq. (15) for
HTTP1.1 with pipelining are newly derived. These for-
mulas may be applicable to other asymmetric networks
that satisfy the following conditions; the client has suf-
ficient buffer capacity and the downstream link is error–
resilient.

We used experimental results to confirm that the
proposed formulas can calculate the transfer time of
web data more precisely than the one already proposed.

Acknowledgments

The authors thank Prof. Matsuichi Yamada of To-
kyo Engineering University for providing us with data

Fig. 12 The transfer time of data sets by pipelined HTTP1.1.
(data set size is 5 kbytes)



2902
IEICE TRANS. COMMUN., VOL.E85–B, NO.12 DECEMBER 2002

Table 2 Proposed formulas.

HTTP version proposed formula formula’s number

HTTP1.0 Thttp1.0 = nTconnect +
n∑

k=1

Ttransmit(k) Formula (9)

HTTP1.1 Thttp1.1 = Tconnect + (n − 1)T ′
connect + Ttransmit(1) +

n∑
k=2

T ′
transmit(k) Formula (13)

HTTP1.1pipeline Thttp1.1−pipeline = Tconnect + T ′
connect + Ttransmit(1) + T ′′

transmit Formula (15)

on the VSAT satellite communication system. This
research was partially supported by the Ministry of
Education, Culture, Sports, Science and Technology,
Grant-in-Aid for Scientific Research (B), 10450152, and
a Hiroshima City University Grant for Special Aca-
demic Research. The authors would like to thank the
anonymous reviewers for their helpful comments and
constructive suggestions.

References

[1] DSL Forum, “General introduction to copper access
technologies,” http://www.adsl.com/general tutorial.html,
April 2001.

[2] E. Duros, W. Dabbous, H. Izumiyama, N. Fujii, and Y.
Zhang, “A link layer tunneling mechanism for unidirec-
tional links,” IETF RFC3077, March 2001.

[3] S. Fujieda, H. Watanabe, and H. Kusumoto, “Transparent
routing in the network with unidirectional links using vir-
tual broadcast links,” IPSJ SIG Notes, 99-DPS-92, pp.49–
54, Feb. 1999.

[4] M. Nakagawa, Y. Hashimoto, H. Nakashima, and T. Kon,
“Performance evaluation and educational application of a
multimedia interactive satellite communication system,”
NTT R&D, vol.47, pp.203–209, Feb. 1998.

[5] S. Miyata, T. Tanaka, and S. Kubota, “Routing man-
agement in asymmetric networks,” NTT R&D, vol.47,
pp.1049–1056, Oct. 1998.

[6] Hughes Network Systems, “DirecPC,” http://www. di-
recpc.com/, April 2001.

[7] H. Balakrishnan and V. Padmanabhan, “How network
asymmetry affects TCP,” IEEE Commun. Mag., vol.39,
no.4, pp.60–67, April 2001.

[8] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext
transfer protocol –HTTP/1.0,” IETF RFC1945, May 1996.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, and T. Berners-Lee, “Hypertext transfer protocol –
HTTP/1.1,” IETF RFC2616, June 1999.

[10] H. Nielsen, J. Gettys, A. Baird-Smith, E. Prudhommeaux,
H. Lee, and C. Lilley, “Network performance effects of
HTTP/1.1, CSS1, and PNG,” Proc. SIGCOMM, vol.27,
no.4, pp.155–166, Oct. 1997.

[11] S. Cheng, K. Lai, and M. Baker, “Analysis of HTTP1.1
performance on a wireless network,” Technical Report CSL-
TR-99-778, Stanford University, Feb. 1999.

[12] G. Hasegawa, M. Murata, and H. Miyahara, “Performance
evaluation of HTTP/TCP on asymmetric networks,” Inter-
national Journal of Communication Systems, vol.12, no.4,
pp.281–296, July 1999.

[13] H. Obata, K. Ishida, J. Funasaka, and K. Amano, “Eval-
uation of TCP performance on asymmetric networks us-
ing satellite and terrestrial links,” IEICE Trans. Commun.,
vol.E84-B, no.6, pp.1480–1487, June 2001.

[14] H. Obata, K. Ishida, J. Funasaka, and K. Amano, “TCP
performance analysis on asymmetric networks composed of

satellite and terrestrial links,” 8th International Conference
on Network Protocols (ICNP2000), pp.199–206, Nov. 2000.

[15] Y. Nishida, O. Nakamura, H. Kusumoto, and J. Murai, “A
broadcasting network architecture for satellite communica-
tion,” IPSJ SIG Notes, 95-OS-69, pp.7–12, June 1995.

[16] H. Obata, K. Ishida, J. Funasaka, and K. Amano,
“HTTP1.0/1.1 performance analysis over asymmetric net-
works using satellite and terrestrial links,” IEICE Technical
Report, IN2001-73, Sept. 2001.

[17] T. Inoue, H. Obata, K. Ishida, K. Amano, Y. Katsumi, and
M. Yamada, “Experimental evaluation of TCP performance
on asymmetric links using VSAT satellite communication
system,” IEICE, Network Architecture Workshop, pp.122–
129, Feb. 2000.

[18] The Apache Software Foundation, “Apache,” http://www.
apache.org/, Dec. 2000.

[19] H. Nielsen, “Libwww robot,” http://www.w3.org/, Dec.
2000.

[20] OPNET Technologies Inc., “OPNET moderler online doc-
umentation version 7.0B,” July 2000.

Hiroyasu Obata received the B.E.
and M.S. degrees in Information Sciences
from Hiroshima City University, Japan,
in 2000 and 2002, respectively. He is
currently in the KDDI Corp. His in-
terests include computer communications
over wireless networks, such as satellite
links.

Kenji Ishida received the B.E.,
M.Sc., and Ph.D. degrees from Hiroshima
University, Japan, in 1984, 1986 and 1989,
respectively. He was at Hiroshima Pre-
fectural University from 1989 to 1997. He
has been an Associate Professor in the De-
partment of Computer Engineering, Fac-
ulty of Information Sciences, Hiroshima
City University, since 1997. His inter-
ests include distributed computing sys-
tems and design of control procedures for

computer networks. Dr. Ishida is a member of IEEE (U.S.A),
ACM (U.S.A), IPSJ (Japan).



OBATA et al.: DATA TRANSFER PERFORMANCE OF HTTP 1.0/1.1 ON ASYMMETRIC NETWORKS
2903

Junichi Funasaka received the B.S.
and M.S. degrees from Tohoku Univer-
sity in 1993 and 1995, respectively. He
also received the M.E. and Ph.D. degrees
from Nara Institute of Science and Tech-
nology in 1997 and 1999, respectively.
Since 1999 he has been a Research As-
sociate in the Department of Computer
Engineering, Faculty of Information Sci-
ences, Hiroshima City University. His re-
search interests include information pro-

cessing in the Internet. Dr. Funasaka is a member of IEEE
(U.S.A), IPSJ (Japan).

Kitsutaro Amano received the B.E.
and Ph.D. degrees from Kyoto University,
Japan, in 1955 and 1963, respectively.
From 1955 to 1994, he was with Kokusai
Denshin Denwa Co., Ltd. (KDD), where
he last held the position of a Deputy Di-
rector of the Meguro Research and De-
velopment Laboratories of KDD. He has,
since 1994, been a Professor in the De-
partment of Computer Engineering, Fac-
ulty of Information Sciences, Hiroshima

City University. His main fields of study are digital transmission
systems and optical fiber undersea cable systems. Dr. Amano is
a member of IEEE (U.S.A), IPSJ (Japan). He is a fellow of the
IEEE.


