On Capacities and Gamonic Functionals

URI http://harp.lib.hiroshima-u.ac.jp/it-hiroshima/metadata/7127
ファイル
タイトル
On Capacities and Gamonic Functionals
著者
氏名 村上 温
ヨミ ムラカミ アツシ
別名 Murakami Atsushi
NDC
413
抄録

Let I be a positive capacity on a metrizable compact space. If I is strongly subadditive,then there exists a vaguely compact convex subset C_0 of the set of all regular probability measures M^+_1 such that ?=sup__<μ∈C_0>∫?dμ for any non-negative bounded analytic function ?, where ?(?)∫^∞_0 1({?≧?})d?. Since the restriction of ? to the set of all non-negative continuous functions is gamonic,by the theory of gamonic functionals,it will be shown that there exists a family {C; C is a vaguely compact convex subset of M^+_1} such that for any bounded semicontinuous function ?, ?(?)=inf___c sup___<μ∈c>fdμ without the strong subadditivity of I. On the other hand,by the theory of the capacitability,minimax theorems for gamonic functionals by Kalton are extended.

掲載雑誌名
広島工業大学研究紀要
12
開始ページ
83
終了ページ
88
出版年月日
Mar-78
出版者
広島工業大学
ISSN
3851672
NCID
AN0021271X
本文言語
英語
資料タイプ
紀要論文
著者版フラグ
出版社版
関連URL
旧URI
区分
it-hiroshima