心的状態遷移ネットワークにおけるリカレントニューラルネットワークによる性格特性に基づく気分の適応的学習法

URI http://harp.lib.hiroshima-u.ac.jp/pu-hiroshima/metadata/12238
File
Title
心的状態遷移ネットワークにおけるリカレントニューラルネットワークによる性格特性に基づく気分の適応的学習法
Title Alternative
An Adaptive Learning Method of the Personality Trait Based Mood in Mental State Transition Network by Recurrent Neural Network
Author
氏名 市村 匠
ヨミ イチムラ タクミ
別名 Ichimura Takumi
氏名 田邊 幸祐
ヨミ タナベ コウスケ
別名 Tanabe Kosuke
氏名 山下 利之
ヨミ ヤマシタ トシユキ
別名 Yamashita Toshiyuki
Abstract

Mental State Transition Network (MSTN) is
a basic concept of approximating to human psychological and mental responses. It can represent transition from an emotional state to others by a stimulus which Emotion Generating Calculations (EGC) method calculates. In this paper, the agent using Mental State Transition Network can interact with human to realize smooth communication
by an adaptive learning method of the user’s personality trait based mood. The learning method consists of the profit sharing (PS) method and the recurrent neural network (RNN). A sequence of sensor input to MSTN is
translated to an episode which consists of mental state and action. In order to learn the tendency effectively, ineffective rules should be removed from the episode. PS
method finds out a detour in episode and should be deleted. Furthermore, RNN works to realize the mood according to user’s personality trait. Some experimental results show the variance of human’s delicate emotion.

Description

開催日:平成26年7月19日
会場:広島市立大学

Journal Title
2014 IEEE SMC Hiroshima Chapter 若手研究会講演論文集
Spage
165
Epage
168
Published Date
2014
Publisher
IEEE SMC Hiroshima Chapter
Contributor
市村匠
Language
jpn
NIIType
Conference Paper
Text Version
出版社版
Set
pu-hiroshima