Profit SharingとRestricted Boltzmann Machineを用いた空間の分節化による学習手法の提案

URI http://harp.lib.hiroshima-u.ac.jp/pu-hiroshima/metadata/12306
File
Title
Profit SharingとRestricted Boltzmann Machineを用いた空間の分節化による学習手法の提案
Title Alternative
Learning method based on Restricted Boltzmann Machine with segmentation of space by Profit Sharing
Author
氏名 大久保 将博
ヨミ オオクボ マサヒロ
別名 Ookubo Masahiro
氏名 市村 匠
ヨミ イチムラ タクミ
別名 Ichimura Takumi
氏名 鎌田 真
ヨミ カマダ シン
別名 Kamada Shin
Abstract

Hierarchical Modular Reinforcement Learning
(HMRL) consists of 2 layered learning where Profit-Sharing works to plan a target position in the higher layer and Q-learning trains the state-action pair to the target in
the lower layer. The method can divide a complex task into subtasks, and it reduces to state dimension and improves learning capability. In order to solve this problem, we propose the learning method based on Restricted Boltzmann Machine (RBM) with subspace divided by Profit Sharing. In this paper, to verify the effectiveness of the proposed method, the assignment problem of taxies was investigated.

Description

開催日:平成27年7月18日
会場:広島市立大学

Journal Title
2015 IEEE SMC Hiroshima Chapter 若手研究会講演論文集
Spage
49
Epage
52
Published Date
2015
Publisher
IEEE SMC Hiroshima Chapter
Contributor
市村匠
Language
jpn
NIIType
Conference Paper
Text Version
出版社版
Set
pu-hiroshima